

Team SSDynamics

Software Design Document

February 7, 2025

Team Members
Carter Kaess, Charles(Chas) Diaz, Connor Aiton, Charles Descamps

Mentors

Brian Donnelly, Savannah Chappus

Sponsors
Chris Ortiz, Senior Technologist​

Western Digital Corp.

John Lee, Senior Director
Western Digital Corp.

Version 2.1

2

Table of Contents

 Introduction​ 2

Solution Vision​ 3
Software Requirements​ 3
Hardware Requirements​ 4

Implementation Overview​ 4
General Approach​ 4

Technologies and Frameworks​ 4
Architectural Overview​ 5
Module and Interface Descriptions​ 6
Implementation Plan​ 10
Conclusion​ 12

3

Introduction

Solid-state drives (SSDs) are essential to modern storage, powering everything from
personal devices to large-scale cloud data centers. Among them, NVMe (Non-Volatile
Memory Express) drives offer high-performance storage using NAND flash memory,
ensuring exceptional speed and efficiency. Their ability to handle demanding workloads
makes them vital for applications requiring high throughput and responsiveness.

Ensuring NVMe drive reliability is crucial in an industry worth tens of billions of dollars.
Western Digital, a leader in storage solutions, relies on rigorous validation processes to
maintain competitive excellence. Traditionally, engineers manually define test
sequences, but this approach has limitations and inefficiencies, which can lead to
critical issues later in the product’s life cycle. These limitations include:

●​ Incomplete test coverage – Manually defined test sequences may miss
important edge cases, leading to undetected issues.

●​ Unconscious bias in test design – Engineers might inadvertently focus on
expected scenarios while overlooking rare but critical failure cases.

●​ Difficulty identifying edge cases – Manually creating test sequences makes it
challenging to capture unexpected or extreme conditions.

●​ Inefficiency and high effort – Engineers spend significant time manually
designing and maintaining test sequences instead of focusing on higher-level
validation tasks.

Solution Vision

To address these challenges, Western Digital’s senior SSD validation technologist,
Chris Ortiz, has tasked our team with developing a proof-of-concept solution that uses
random model simulation to automate test generation. By eliminating the need for
manual test definitions, our approach expands coverage, accelerates validation, and
improves overall SSD reliability.

Our solution must meet specific requirements, which we have divided into two
categories: software and hardware considerations.

Software Requirements

●​ Automate NVMe test sequence generation dynamically based on real-world
usage patterns.

●​ Ensure randomness while maintaining reproducibility for debugging purposes.
●​ Measure improvements in test coverage and validation efficiency.

4

●​ Integrate seamlessly with Western Digital’s existing validation framework and
SSD testing tools.

Hardware Requirements

●​ Comply with Western Digital’s hardware validation infrastructure and test
environments.

●​ Remain adaptable to future validation frameworks with minimal modifications.
●​ Ensure resource efficiency to avoid introducing significant computational

overhead.

By addressing inefficiencies in SSD validation through automated test generation, our
solution aims to make the process more robust, scalable, and effective while reducing
reliance on manual test definitions.

Implementation Overview

Our solution aims to significantly enhance NVMe validation by automating test case
generation using a random model simulation framework. The key challenge we are
addressing is the manual nature of current validation workflows, particularly the creation
of test cases, which often leads to limited coverage and missed edge cases. The
proposed system will streamline the testing process by automatically generating diverse
test sequences, ultimately improving reliability, adaptability, and providing valuable
data-driven insights. This will allow Western Digital to optimize its NVMe testing and
better meet the demands of the industry.

General Approach

The solution centers on a random model simulation that autonomously generates
diverse test case sequences. These test cases are based on an NVMe specification
file written in TLA+, a formal specification language. This file provides a high-level
design of the system, including component interactions, states, and state transitions.
The simulation explores new state spaces which represent every possible state of
testing sequences, which increases test case and functionality coverage while
uncovering edge cases that traditional methods might miss. The generated test
sequences are executed on physical NVMe drives, with results logged for later analysis.

Technologies and Frameworks

1.​ TLA+: The system specification is defined using TLA+, which abstracts the
design and system behaviors. This abstraction allows engineers to focus on

5

higher-level design rather than implementation details, ensuring alignment with
industry standards.

2.​ Random Simulation Algorithm: A seeded random algorithm autonomously
generates test cases, ensuring broad coverage of test cases and the discovery of
new edge cases. This randomness reduces human bias and helps explore
scenarios that might not be immediately apparent to an engineer or developer.

3.​ NVMe Command Interface: This interface allows the model simulation to
interact directly with the NVMe drives. It automates the execution of test
sequences and ensures consistent, repeatable results.

4.​ Logging System: Test results are captured by a modular logging system, which
can be customized to meet Western Digital's needs. This system ensures
traceability and enables engineers to focus on relevant data.

5.​ Seed Resampling: To ensure repeatability, the system includes seed
resampling. This allows errors to be reproducible, which is critical for debugging
and fixing issues in the testing process.

6.​ Python: An easy to maintain language that will act as our main driver connecting
everything.

Architectural Overview
To effectively carry out our project functions, we will need to build a clear and well
modularized system.The idea for our solution is to use an API-like terminal program
called NVMe-CLI which can communicate and call commands to the hardware of an
SSD, then connect this to a Python script that will call those commands. The commands
that the Python script calls will be determined by two things:

1.​ A TLA+ specification file
2.​ A randomly generated number or

seed.

TLA+ is a high level design language which
is focused on the design above the code
level. In our case we could write a
specification file that defines all tests the
NVMe-CLI will execute. The seed will
randomly decide which of the tests written in
the TLA+ specification are used during that
run.

6

This means that our solution can load a TLA+ specification script, then call the tests
randomly to the NVME-CLI through a Python PlusPy script. These tests can be done
repeatedly and can also be used during down time between other tests. This will
increase the likelihood of the testing team to find errors in their SSDs.

How It Works

Diagram displaying system architecture

●​ System Design Specification: This specification file will include industry

standards for driving test sequences, as well as new requirements from our
client.The system begins by taking an NVMe specification file, written in TLA+,
which defines how the system should work at a design level, defining how
components interact and possible state and state transitions on a very high level.

●​ Generated Random Test Sequences: A core feature of our software is a seeded
random simulation algorithm that autonomously creates numerous test case
sequences that aim to explore previously unexplored test cases.

●​ Execution of Test Sequence: The generated test sequence will be executed
automatically on physical NVMe drives. The program will then record the results
for later analysis. Seed sampling will then be implemented to ensure repeatable
results. If the algorithm detects an error, we resample the seed until it ends.

●​ Logged Results from Execution: Results are captured via a modular logging
component that captures data on each outcome, ensuring traceability. This
logger will be customizable to the client's needs, including changing the levels of
failure reported or sequences recorded. Engineers will use these reports to
evaluate product readiness.

7

Module and Interface Descriptions
Now that we’ve gone over the basics we will dive deeper into the project details,
including files and interactions between them which will describe the implementation of
our project.

interface.py

interface.py helps to automate testing by allowing
the user to provide arguments for things such as the
number of attempts to make, retry limits, starting state,
next state, and other settings through the command line.
These parameters are used to guide the testing while
staying within the TLA+ specification. Testing can be
made more thorough by increasing the number of
attempts to make, changing the starting and next states,
and decreasing how many errors need to be found
before testing is halted. This flexibility ensures that
testing is as robust as needed and can be stopped when
errors are found.

tester.py

The tester.py file serves as the main calling function
and uses interface.py to set up the testing
parameters such as logging detail and commands to be
run. interface.py is accessed directly by tester.py
which takes in the testing parameters and creates a
testing object. This object serves as a basic data
structure and persists throughout the test to ensure the
parameters are used correctly.

logger_config.py

The logger_config.py file sets parameters for logging the output from the console,
including formatting, the output file, and level of logging detail. The output file is
specified by the tester at the same time as the testing parameters are entered. The
logger_config.py file also prints out a success message to ensure the logging was

8

successfully outputted to a file. Depending on the logging level, the file will also include
a timestamp, the importance of the logging line, and the log message. This file ensures
that the output of the program is saved to a file for later review.

This file focuses on logging the output from the NVMe CLI. In order to maintain
modularity, we are using several methods as follows: The function setup_log()allows
the user to input testing parameters which specify the logging detail and output file
name. The logger then takes these parameters and uses them to initialize the logging
handler. The formatter then takes the information and adds metadata such as the
timestamp of the output. Stream handler takes this formatted output and outputs it to
standard out for the user to see in real time. Finally the file handler outputs this to a file
for later review.

nvme.py

nvme.py provides an interface for executing NVMe CLI commands. The main use is to
run commands automatically as the states inside the TLA+ file are explored. The file
also implements the logging functionality created by other files ensuring the output is
properly saved to a file. This file also handles error messages as they happen and
sends them to be logged.

9

The nvme.py file focuses on executing the NVMe CLI
commands using a modular design that uses different
functions for each type of NVMe CLI command as they have
different input parameters.

The execute_command() function uses the device path
along with supporting functions to execute the command on
the correct device. The type of NVMe CLI command
determines which execution command is called: either
admin_passthru() or io_passthru(). These functions
take the input information from execute_command() and
format it into a proper NVMe CLI command before the run()
function is called which executes the command. The output
is then passed to the logging file where its logic is handled
separately.

parser.py

parser.py attempts to directly translate the states provided
by the TLA+ specification into NVMe CLI commands before
using nvme.py to execute them. It specifies
which NVMe device the commands should
be executed on before attempting to
translate them. If a direct translation is not
possible, nvme.py is sent the incomplete
data and then returns an error message.

parser.py focuses on translating the
transition between TLA+ states into an
NVMe CLI command. This is done by
taking the information from interface.py
about the device and testing parameters.
The information is then converted into a
NVMe CLI command before calling the
executor functionality.

10

Pluspy

The pluspy library is specifically designed to help interpret
TLA+ models, check models, visualize, and much more,
specifically in python. However we will just be using it to help
interpret TLA+ models as it is assumed that the TLA+
specification will already be followed when using this
program. We will modify Pluspy to help suit our needs better,
only taking advantage of the functionality we need and allow
for Western Digital specific states to be interpreted.

Pluspy is a library used internally and has no public facing
functionality. We are using it to help translate TLA+ states and
transitions into NVMe CLI commands. It's– specifically called
by nvme_tester with the TLA+ information before passing
its output to tester.py to execute the test.

Implementation Plan
When planning out each section, we noted we took about 2-3
weeks typically to complete it, and make sure that each part
interacts with the system overall. This is very dynamic, and
may be resized to make sure that whichever sections are
giving us trouble can be moved around or retimed to allow for
the other sections to be completed properly. The testing part
of the timeline is meant to endure through the entire project,
as we need to make sure that the project is working as
intended before handed over to the client.

When working on the project, we intend to work on it together, but also have pairs who
specialize in certain areas. That's what each color bar is for, the pink for NVMe-CLI,
blue for PlusPy/Python, and green for TLA+. It focuses on the kind of code we are going
to write. The PlusPy modification bar is purely speculation in case the PlusPy library we
are using needs to be modified to support a function that we write.

We like to do pair programming, when possible, as it helps keep each other
accountable, and keeps everyone in the loop about what each function or code is doing.
This does try to align with our focuses.

11

12

Each milestone is there to outline the major goals, and when we expect to have them
completed by, to be able to show them off to the client during that week’s meeting. We
would ideally have the project complete by the end of April.

The development timeline is meant to mirror the development of each Python module
for the project, with each row being a module of our code, and how long we expect it to
take. Flexibility is key here though, as we may need to implement more modules to
either make the project more modular, or to implement some functionality we need to
add on.

Conclusion
Solid state drives are everywhere due to their small size and incredible performance
compared to larger hard disks. Because of their speed, these devices need to be tested
thoroughly to ensure functionality and reliability. This new technology and extra speed
leads to more errors, requiring more through testing. We hope that our solution will
assist human-made test cases that may not thoroughly test these devices. Our system
implements several technologies to achieve this such as, TLA+, Pluspy, and NVMe CLI
commands, with several python files which help translate TLA+ into NVMe CLI
commands, execute those commands, and save the output to a file for review. In
addition we are implementing a seeded test case generator allowing for the same test to
be run multiple times to ensure stability. The modularity of these files allows for easier
maintenance and compatibility. Our program will serve as a proof of concept for a more
automated testing system, allowing engineers to focus on resolving bugs instead of
trying to find them. Given the need for more through testing our program will assist
engineers in ensuring that their devices are stable and ready for the consumer market.

	
	Team SSDynamics
	Software Design Document
	Version 2.1
	Table of Contents

	Introduction
	Solution Vision
	Software Requirements
	Hardware Requirements

	Implementation Overview
	General Approach
	Technologies and Frameworks

	Architectural Overview
	Module and Interface Descriptions
	Implementation Plan
	Conclusion

